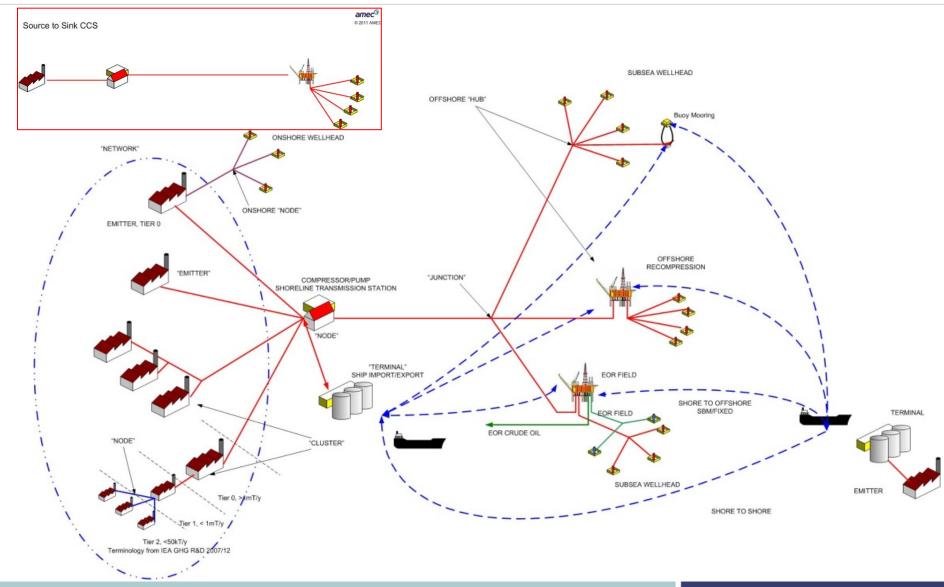


Overcoming CO2 transportation infrastructure deployment challenges - pipeline network or single source? James Watt, Technical Manager CCS

8th October 2012



The information presented here is available from public sources and is not in anyway endorsed by AMEC plc.

Definitions

Deployment challenges

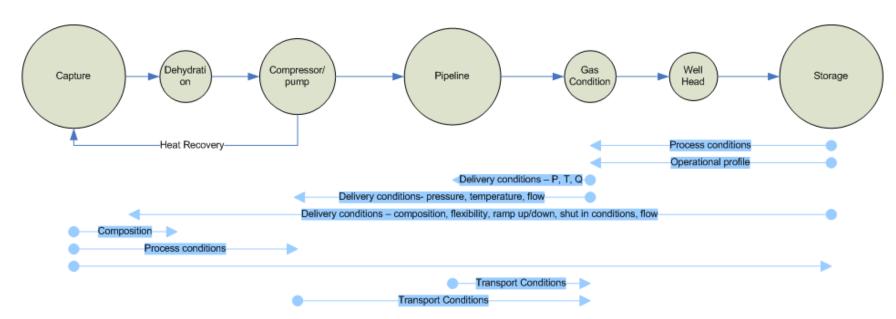
- First projects not here yet source to storage only
- FUNDING!!
- Planning
- Regional "cluster" thinking
 - Teesside
 - Humber
- Policy is unclear DECC competition is helping but not thinking about next phase
- Which project
- Which store
 - Type, location, volume, is it assessed/surveyed yet
- Impact of EOR will we/won't we
- Re-use is more complicated than previously envisaged

Things to resolve

Research needs

- Dispersion modelling
- Pipeline failure understanding behaviour
- Clustering better understanding of behaviours
- Flexibility
- Legislation/guidance
 - Position on dense phase or liquid pipelines in seems unclear again
 - First project will need to find a way
- Impact of shipping on clusters and pipelines
- Public engagement, stakeholder education

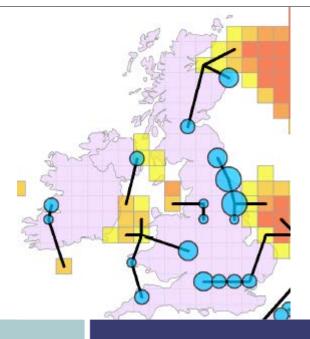
AMECs Key Learning so far,...



- Competency
- Requirements for good quality activities
- In multi-partner schemes
 - Basis of Design not transport specific, full chain
 - Overall philosophies for scheme need to be considered
 - Communication and collaboration plans
 - Significant culture issues in consortium
 - Reliability and Availability needs to be considered across the chain
- Flexibility impacts everyone
 - Compressors are not necessarily flexible
- Be realistic about;
 - Flexing
 - Impact of storage location, schedule, conditions
 - Transport conditions

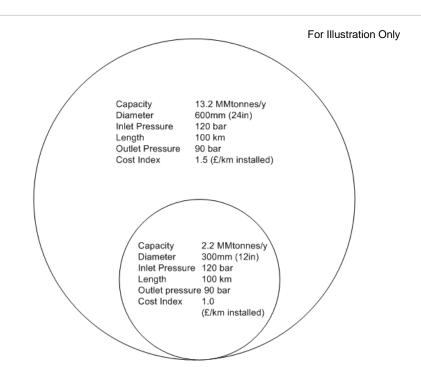
Execution Strategy - End-to-end strategy

- Critical influences come from downstream and upstream sources (above)
- Requires high level information exchange and co-ordination
- End-to-end philosophies and specifications
 - Operations (including flexibility), control, RAM, Emergency, Start-up/shut-down, commissioning, composition specifications
 - Design basis at every battery limit



High level transport influences

- Emitter and storage site size and location
- Conditions received and required
- Route parameters
 - Legislation (trans-boundary, regulations)
 - Level of study
- Route constraints
 - Terrain
 - Environment
 - Population numbers and attitude
- Compression philosophy
- Re-use
- CO-ORDINATE timeline, entry specification, access, flexibility


AMEC Infrastructure Model Diagram - deleted

Right-sizing

- Right sizing is;
 - Sizing for future users
 - Sizing for future plant size
 - Investing in future network
- Why?
 - Finite number of pipelines in one geographical area
 - Minimise disruption to local environment
 - Cheaper x3-8 times less expensive per tonne than A to B pipelines
- Higher cost of investment
 - CO2Sense study showed 11-16 year "no-regrets period"

Common Infrastructure Cost

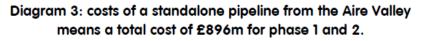
- Common infrastructure costs difficult to analyse
 - The assumptions aren't often clear
 - Economics differ
- Preference for comparison based on overnight cost per tonne
- Followed by the complex economics

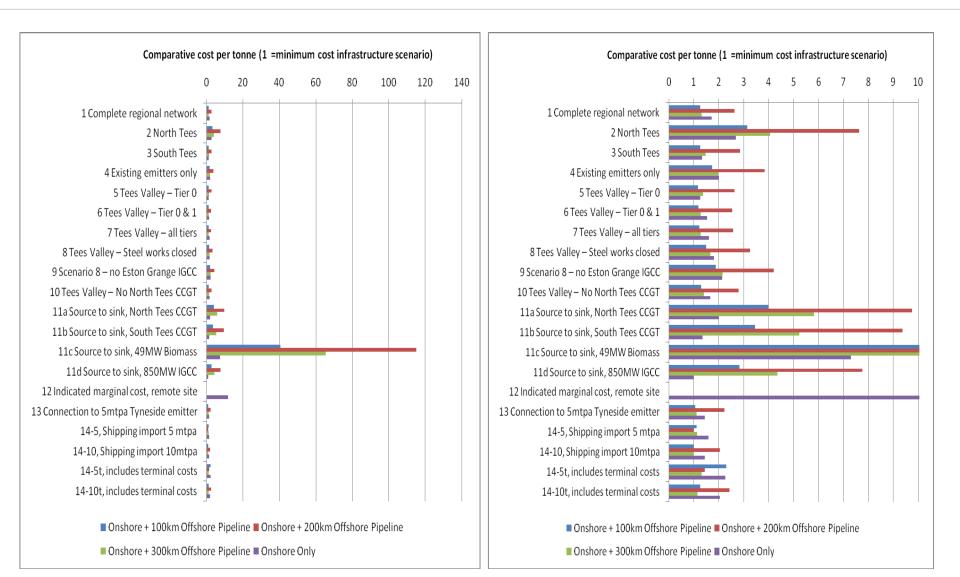
- Modelled cost per tonne
 - Humber region £1.7/t
 - Scotland c. £8/t
 - Tees £2-4/t depending on storage target
- Influences on cost per tonne
 - Period of operation
 - Scenario's
 - Emitter size
 - Right sizing of pipelines

11

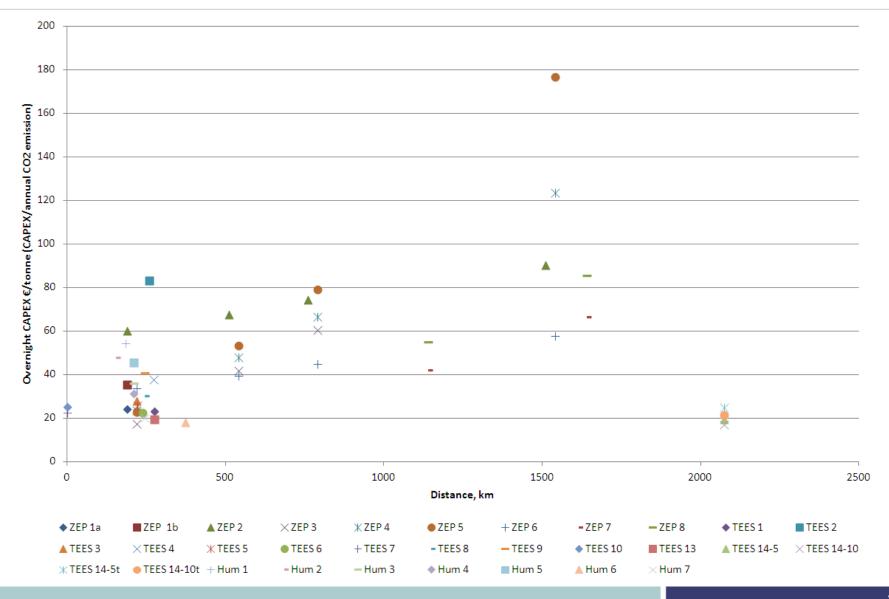
Examining Right Sizing

- The CO2Sense Humber study focused on network comparisons
- Two large 4MMte/y emitters with A-B solutions - £481m
- Networked £322m
- Add a third £334m
- Major savings offshore
- If you add the Aire valley the saving is 25% of the CAPEX




Diagram 4: integrated phase 1 and 2, with potential CO₂ vessel capability in the Humber.

Scenario Costs (Overnight CAPEX) -Teesside



Cost of Infrastructure Schemes

Re-use

- Re-use is something to potentially consider
- Issues with age of asset will be key driver
- Do not assume that ROW agreements will continue to apply
- Effectively seeking permission for a new pipeline
- Has technical restrictions
 - Materials
 - Original design
 - Switch out of valves
 - Gas phase dramatically increases compression costs CAPEX and OPEX

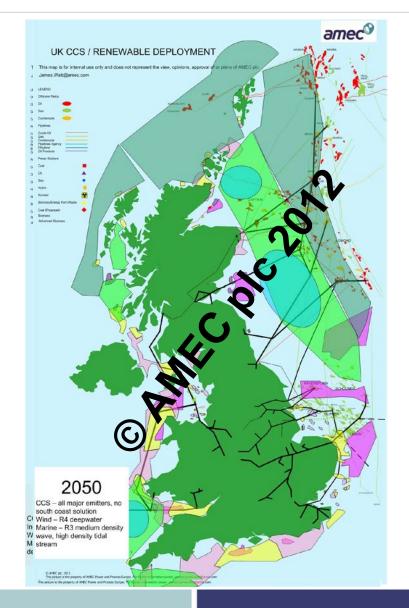
- Longannet highlighted key considerations
 - Costs and extent of modification
 - Disinvestment from existing assets (compressors and multi junctions)
 - Changes of use impact on land use, permissions etc
- Indicative costs of;
 - £0.3 million/km
 - £0.2 million/km without "land" charge

Costs issues for the future

- Pipelines are fairly robust
 - Comparable design
 - Good body of costs
- Some reductions may emerge
 - Conservative design
 - Lack of experience
 - Lack of knowledge
- Understanding flexibility

- Compression at source
 - Increasing levels of integration
 - Heat recovery
 - Interaction with capture plant
- Conditioning and dehydration options
 Needs examination
- Experience will tend to impact OPEX more than CAPEX

Experience, engagement and education


- Experience translating to CCS market from EOR, pipelines and acid gas
- Raising knowledge levels
 - Pilot and demo programs
 - Second generation development
 - Academic research
 - Transfer to industry
- Public engagement
 - From other CCS projects
 - Gas storage and wind farms
- Education
 - Ensuring skills are taught now for future resource
 - Training current resource with new skills

Consider this,... a slightly different North Sea

- The animation is one scenario being examined by AMEC CCS team
- It includes marine and wind roll out
- It is viewed as a positive deployment rate
- There are assumptions behind this of course
- But over time this is one way CCS may deploy
- There are other pressures that will affect this;
 - schedules
 - routes
 - access

Its not all bad,...

- UK leads the way on clustering
 - Humber
 - Teesside
 - Scotland emitter and storage clusters
 - Mersey & Dee
 - Thames & South East (high level)
- Research is being driven by UK bodies, much better than 5 years ago
- Knowledge levels are increasing de-risking projects as it goes
- Experience levels are increasing
- Regardless of cluster or single source to store we need a project, we need to move on.

Thanks

James Watt Technical Manager – CCS & Renewable Energy AMEC Lingfield House Lingfield Point Darlington Co. Durham, DL1 1RW, UK t:01325 744400 e: james.watt@amec.com